Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles
نویسندگان
چکیده
Improved optical absorption and photocurrent for polythiophene–fullerene bulk heterojunction photovoltaic devices is demonstrated using a unique self-assembled monolayer of Ag nanoparticles formed from a colloidal solution. With the presence of suitable nanoparticle organic capping groups that inhibit its propensity to agglomerate, the particle-to-particle spacing can be tailored. Transmission electron microscopy reveals the self-assembled Ag nanospheres are highly uniform with an average diameter of 4nm and controllable particle-to-particle spacing. The localized surface plasmon resonance peak is 465nm with a narrow full width at half maximum (95nm). In the spectral range of 350–650nm, where the organic bulk heterojunction photoactive film absorbs, an enhanced optical absorption is observed due to the increased electric field in the photoactive layer by excited localized surface plasmons within the Ag nanospheres. Under the short-circuit condition, the induced photocurrent efficiency (IPCE) measurement demonstrates that the maximum IPCE increased to 51.6% at 500nm for the experimental devices with the self-assembled layer of Ag nanoparticles, while the IPCE of the reference devices without the plasmon-active Ag nanoparticles is 45.7% at 480nm. For the experimental devices under air mass 1.5 global filtered illuminations with incident intensity of 100mW/ cm, the increased short-circuit current density is observed due to the enhancement of the photogeneration of excitons near the plasmon resonance of the Ag nanoparticles. & 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملEnhanced optical absorption in organic solar cells using metal nano particles
In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...
متن کاملEnhanced optical absorption in organic solar cells using metal nano particles
In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...
متن کاملNovel architecture of plasmon excitation based on self-assembled nanoparticle arrays for photovoltaics.
An efficient approach to producing hexagonally self-assembled and well-dispersed gold (Au) nanoparticles (NPs) in the pores of porous anodic aluminum oxide (AAO) is reported. This approach is particularly useful for tuning the surface plasmon resonance frequency of Au NPs by varying the effective dielectric constant of AAO. A strongly enhanced Raman spectrum of dye molecule rhodamine 6G using t...
متن کاملTransient Photocurrent Response of Plasmon-Enhanced Polymer Solar Cells with Gold Nanoparticles
In this work, the transient photocurrent of the plasmon-enhanced polymer bulk heterojunction solar cells based on poly(3-hexylthiophene) (P3HT) and [6,6]-Phenyl C61 butyric acid methyl ester (PCBM) is investigated. Two kinds of localized surface plasmon resonance (LSPR) enhanced devices were fabricated by doping the gold nanoparticles (Au NPs) into the anode buffer layer and inserting Au NPs be...
متن کامل